K-5 ISV

AY; - 12 A

6.3 V 50 PIV LM323 |
110 VAC RMS

3 A

L+ L v
’I‘ 'I“o.l uf—Ji;1 U{I‘31.

10,000 wuf.

‘A 2K SYMBOLIC ASSEMBLER
FOR THE 6502

10 KQ
K1 bo !
7400
92
RAM R/W
4 |
WE (o WE (of:
ABO e—— g AQ — . AD
AB] ————um—— 7] —— Al
AB2 ~———mmep A2 p——————p A7
ABY el A3 A3
AB4 ———————1 74 2114L3 p——————¥ A4 2114L3
ABS —————————p A5 SENE—— Y
ABG A6 P A6
AB7 o A7 > A7
0\ —— | » AS8
ABY9 ——————————9» A9 f——————» A9
D1 D2 D3 D4 DI D2 D3 D4

DBO DBI DB2 DB3 bB4 DBS5 DB6 DB7

A 2K SYMBOLIC ASSEMBLER FOR THE 6502

Robert Ford Denison

A 2K SYMBOLIC ASSEMBLER FOR THE 6502

Copyright 1979
by Robert Ford Denison
RD5 Teeter Rd.
Ithaca, NY 14850

All rights reserved, including the right to reproduce the
program or documentation in machine-readable form, including
magnetic media and read-only-memory.

Cover: Schematics for a 5V, 3A regulated power supply and a

1K x 8 read/write memory block. The power supply and three

such memory blocks can be added to the basic KIM-1 microcomputer
to provide the 4K RAM required by this assembler. Parts are
available from Jameco Electronics.

ii

—
.

TABLE OF CONTENTS

INTRODUCTION
USE OF THE ASSEMBLER
2. Basic Concepts
Control Mode
Assembly Language Format
Edit Mode Commands
Programming Restrictions
Sample Run
Structured Programming
TING
ORY OF OPERATION
Encoding Scheme
Useful Subroutines
IFICATION
Changing Special Key Definitions
Moving Tables
Adding Custom Commands
Relocation
I/0 Requirements

I
H

0

v T A 2NN
VT B W ORI~ U BB -

APPENDIX A: AN INEXPENSIVE I/0 SYSTEM
APPENDIX B: ANSWERS TO USER QUESTIONS

[T B0 R S IR W - (S I (V)

P R B e

TABLES

Input Format for Commands and Instructions
Error Codes

Important Arrays and Pointers

Global Symbols on Page Zero

Other Global Symbols

Hierarchy of Modules

I/0 Routines

iii

LB T R R

10

13
41
41
41
46
46
46
46
47
47

49
55

42
43

45
48

1. INTRODUCTION

Microcomputers based on the powerful 6502 microprocessor
are becoming increasingly widespread., Business, educational,
and word-processing applications generally require expensive
disk-based systems running high level languages such as BASIC
or Pascal. Inexpensive 6502 systems have mainly been limited
to such trivial uses as games, checkbook balancing, and recipe
files. Games may, of course, be used for the nontrivial pur-
pose of learning about microcomputers.

Inexpensive systems may, however, be more than adequate for
quite sophisticated applications in the field of process control
and data acquisiticn. A simple example is turning a tape
recorder on at a specified time to record a radio program.
Opening and closing insulated shutters to maximize solar heat
gain while minimizing heat loss is more challenging, but could
result in considerable savings. An example of a scientific
application is collecting data from temperature and pressure
sensors in a study of sap flow in sugar maples.

My own experience has been entirely with the MOS Technology
KIM-1, which is ideal for such applications. I first used it
to control an optical printer which was used to produce special
cinematic effects. More recently, my KIM-1 was part of a com-
plex gas analysis system for my research on nitrogen fixation
in soybeans.

Neither expensive computer hardware nor years of training
is necessary to attempt such projects. My system has only
4K RAM. I use a $30 software-scanned keyboard for input, and
use the KIM-1 display as an output device for both numbers and
letters. I learned most of what I know in this field from the
MOS Technology Programming Manual, Don Lancaster's TTL Cookbook,
BYTE magazine, and by trial and error.

The key to process control programming is the use of assembly
language. It is much faster than BASIC, and uses far less mem-
ory than high level languages. In addition, most process control
problems can be solved more easily and directly in assembly
language than in a higher level language.

An assembler makes assembly language programming consider-
ably easier by taking over the time-consuming and error-prone
task of translating assembly language into machine language.

A true assembler, such as the one described herein, allows the
programmer to refer to variables, subroutines, and lines within
subroutines using descriptive names, rather than their addresses.

This assembler outperforms all other true assemblers for
the 6502 with which I am familiar, in terms of speed and memory
efficiency. It can assemble a 128 byte module in a fraction

of a second. Programs up to 1K bytes can be assembled in a
KIM-1 system with only 4K RAM, including 2K for the assembler
itself. I would appreciate being informed of any other symbolic
assembler which can match either of these claims.

I would like to thank Dr. H. R. Luxenberg, Professor of
Computer Science at the California State University at Chico
for modifying the assembler I/0 for the SYM, and for
pointing out errors in the program and documentation. John
Geiger, of Milwaukee, found additional errors and kindly
relocated the assembler to start at address 2000. Any errors
that remain are my responsibility, and I would appreciate having
them brought to my attention.

This book is dedicated to Mike Colyar, of the Evergreen
State College, who introduced me to electronics.

2. USE OF THE ASSEMBLER

Systom requirements. The assembler requires a 650X-based
microcomputer with at least 4K RAM and an appropriate I/0 device.
This documentation is based on a standard system: a KIM-1 with
3K RAM at address 0400 and a conventional computer terminal
connected to the serial interface. A second version is avail-
able for KIM-1 systems with LK RAM at address 2000; addresses
in parentheses refer to that version.

Other systems. The assembler can be modified for use with
other systems by following the guidelines in Section 5. DMore
detailed instructions for specific systems will be made avail-
able as demand warrants. SYM owners see Appendix B.

Installing the assembler. To install the assembler in the
standard system, load it from cassette or listing, Begin execu-
tion at address 05B8 (23B8). The assembler will prompt with a
question mark, indicating that it is in control mode.

2.1 Basic Concepts

Modes. The assembler operates in two modes. "Control"
mode allows control of the allocation of memory space, defini-
tion of variables, and related functions. "Edit" mode is used

to actually enter, modify, and assemble modules.

Modules. A "module" is a subroutine or a segment of a
program or subroutine. Each use of edit mode corresponds to
one module. Modules are limited in length to 128 bytes, but
a program may contain many modules. Total program length is
limited only by available RAM.

Module pointer. Assembled modules are stored successively
in RAM under the control of the "module pointer." This pointer
is initialized to 0C80 {2A80). It is then incremented auto-
matically each time a module is stored, to prevent the module
from being overwritten by the next module. More information on
this and other pointers is given in Table 4.1,

Symbols. A "symbeol" is a name given to a specific address.
It may refer to a variable, a table, a module, a line within a
module, or some other address such as an I/O port. Symbols may
be up to six characters in length.

Global vs., local symbols. "Global" symbols are defined in
control mode and may be referenced by any module. Symbols
defined in edit mode are "local" to the module in which they
were created and may not be referenced by other modules. Line
labels are local symbols, so two modules may use identical
line labels without confusion,

Input format. Input to the assembler must be in a specific
format. Each input line is divided into a series of "fields."
Each item must be left-justified in the correct field. In
practice this is quite easy, because the "space" bar has been
programmed to advance automatically to the beginning of the
next field each time it is pressed. It may also be used to
skip a field.

Special key definitions. Each line must be terminated with
a carriage return. A "null line" consists of a carriage return
only. "Backspace"” may be used to correct errors within a given
field; more serious errors require use of the assembler's
editing capability. The "escape" key causes the assembler to
execute a BRK instruction, and may be used to return to the
system monitor. Users whose terminals lack any of the above
keys should refer to Section 5.1.

Hexadecimal nuﬁberg. The assembler uses hexadecimal (base
sixteen) numbers exclusively. All addresses in this documenta-
tion are therefore given in hexadecimal. Blanks are read as
Zeroes.

Arrays. An array is any variable, e.g. a table, that
occupies more than one byte. Arrays are limited to 255 bytes.
However, two or more arrays may be treated as one large array
if an array longer than 255 bytes is needed.

Source vs. object code. "Source code" refers to the assem-
bly language module. Assembly is the process of translating
source into "object," or machine language code.

2.2 Control Mode

In this mode the user can define global symbols, allocate
space for tables, redefine the module pointer, and enter edit
mode to begin a new module. Control mode commands begin with
a question mark, which is alsc a prompt symbol for the mode.

Enter the command in the first field, followed by any
additional information required in subsequent fields. The
format for each command is given in Table 2.1 and illustrated
by example in Section 2.6.

Define global symbols. The ?ASSGN command is used to assign
addresses to global symbols. A four-digit address is required.
Additional symbols may be defined without typing "7?ASSGN" again.
Just hit the space bar to skip the first field; then enter the
symbol and its address. Enter a null line (carriage return)
when all symbols have been defined.

Allocate space for tables. Use the ?TABLE command to
reserve space for tables. Enter the name of the table and its
length in bytes (two digits). The symbol is assigned the

4

current value of the module pointer as its address. The pointer
is then incremented by the length of the table to prevent over-
write by the next table or module., Additional tables may be
defined in a manner similar to that for ?ASSGN.

Redefine the module pointer. The ?REDEF command may be
used with caution to change the value of the module pointer.
This might be done to allow assembled modules to be stored in
memory locations not ordinarily used for program storage. For
example, assembled modules might be stored on page zerc or one
if space were at a premium.

Begin new module. The ?BEGIN command causes the assembler
to enter edit mode toc start a new module. The name of the
module is entered in the second field, and is added to the
symbol table as a global symbol. Its address is the current
value of the.module pointer, since that is where the module
will be stored after it is assembled., The module name is also
the label for the first line in the module, unless another line
label is supplied.

2.3 Assembly Language Format

In edit mode, the user inputs an assembly language module.
The module is edited and assembled using commands described in
Section 2.4, This process is illustrated in Section 2.6. The
prompt for edit mode is a hyphen, followed by the address where
the assembly language code for the line will be stored.

To enter a line of assembly language, hit the space bar to
skip over the first field. The contents of the other fields
are summarized in Table 2.1 and further explained below.

Label. Enter a symbol in the second field if the line will
be referenced by a branch instruction elsewhere in the module.
Otherwise hit the space bar again.

Opcode. This field must contain the mnemonic and address
mode for the desired instruction. The mnemonic is the stan-
dard three-letter MOS Technology code, e.g. LDA. Absolute,
implied, and relative addressing require no additional informa-
tion in this field. The other address mcdes are indicated in
the opcode field by one or two characters immediately following
the mnemonic, e.g. LDAZX. These mode codes are #,Z,A,I1X,IY,ZX,
X,Y,I, and ZY for immediate, zero page, accumulator, indexed
indirect X, indirect indexed Y, zero page X, absolute X, absolute
Y, indirect, and zero page Y addressing. Users who prefer IM
for immediate addressing need only change two bytes at 02AC
(20AC) to 49,4D.

Operand. For instructions that require no operand, hit
carriage return to end the line. Immediate addressing requires
a two-digit hexadecimal number in this field. Other address
modes use a symbol as their operand.

5

Table 2.1: Input Format for Commands and Instructions

Field 1 TField 2 Field 3 Field 4 Fijeld 5

Assign address to symbol. 7ASSGN symbol nnnn
Reserve space for table. ?TABLE symbol nn
Redefine module pointer. 7REDEF nnnn
Begin new module. ?BEGIN symbol
One-byte instructions. (symbol) opcode
Immediate mode instructions. {symbol)} opcode mn
Other two-byte instructions. (symbol) opcode symbol
Three-byte instructions. {symbol) opcode symbol ({nn)
Define local symbol. -LOCAL symbel nnnn
Assemble module. -ASSEM
Print lines in range. ~PRINT nnTOnn
Insert before line given. ~-INSRT nn
Replace lines in range. ~INSRT nnTOnn
Append to end of module. ~INSRT FF
Save module in RAM. -STORE
() oOptional.

nn Hexadecimal digits.

Offset. Three-byte instructions may use a two-digit hexa-
decimal number in this field to indicate an offset from the
beginning of a table or array. This value is added to the base
address of the array on assembly. The offset is optional, and
may not be used with two-byte instructions.

2.4 Edit Mode Commands

Commands are used in edit mode to define local symbols and
to assemble, list, edit, and save a module. Edit mode commands
begin with a hyphen. Their format is %iven in Table 2.1 and
their use is illustrated in Section 2.

Define local symbols. The -LOCAL command is identical to
?ASSGN except that the symbols defined are local to the module.

Assemble. The -ASSEM command translates the module into
machine language. The assembler will respond quickly with either
the normal address prompt, indicating successful assembly, or
with one or more undefined symbols. Use the -LOCAL command to
define these symbols before assembling again. Undefined global
symbols may be temporarily defined locally to allow assembly.

List. An assembled module may be listed using the -PRINT
command. Two line numbers must be supplied. The number of a
line consists of the two least significant digits of its address
prompt. -PRINT will 1ist from the first line number up tec, but
not including, the second line number. The module must be
reassembled before listing each time it is modified.

Test., The assembled module may be tested by hitting "reset"
to return to the system monitor. Check the module pointer at
0040,41 to get the start address of the module. The module may
be tested using appropriate user or monitor routines. Then re-
turn to edit mode by entering the assembler at 05D6 (23D6).
Correct any errors (using the -INSRT command) and reassemble.

Insert lines. The -INSRT command can be used to insert,
delete, or replace lines. To insert one or more lines, use
-INSRT with a line number. ©New lines are inserted starting at
that line number. The line previously at that address, and all

lines following it, are automatically moved forward to make room
for each new line.

Delete or replace lines. If a second line number is supplied
with the -INSRT command, the assembler will delete the lines in
the specified range. Llnes following the deletion are moved back
to fill the resulting gap. New lines can then be inserted
starting at the first line number.

Append new lines, After inserting or deleting lines, the
user may wish to add lines to the end of the module. To do
this, type -INSRT FF (fast forward?). Ignore the resulting
error code,

Save. An assembled module is saved using the -STORE command.
The module length is added to the module pointer to prevent over-
write by the next module. Memory space is conserved by clearing
local symbols from the symbol table. The assembler then returns
to control mode, allowing definition of new global symbols,
redefinition of the module pointer, or beginning a new module.

Tape storage. Either source or object code can be saved on
tape. Saving object code is easy since it only requires dumping
the area of memory which contains the code itself. Saving source
code requires saving both the symbol table and the module. This
is done by dumping OA0O0-OC?7F (2800-2A7F). In addition, pointers
at the following locations must be saved: 003C, 003D, 0050, 0051,
0056, It is probably easiest just to make a note of these pointer
values, using the ferm at the end of this manual.

Retrieving modules from tape requires that the assembler
he initialized by running it normally from 05B8 (23B8). Then
hit "reset" to leave the assembler. Load the module from
tape, restore the pointer values, and enter the assembler at
05D6 (23D6). Ignore any error message on re-entry.

Note that the previous contents of the symbol table are des-
troyed by this process, so that some global symbols may have to
be redefined if the module is loaded for use with a new program.
The assembled module will be stored according to the value of
the module pointer before the module was loaded. This may not
correspond to its previous location. ?PREDEF may be used to store
the assembled location wherever desired.

Saving and retrieving assembly language modules is a tricky
process which requires experience to master. It may be easier
to debug the module thoroughly and save the object code.

2.5 Programming Restrictions

The assembler is reasonably immune to user error, other than
careless use of the ?REDEF command. Each input line is checked
for correctness; when an error is detected, the normal prompt
symbol is replaced with an error code (Table 2.2). The restric-
tions below are designed to eliminate errors at assembly time
(other than undefined symbols) and to minimize debugging time.

Commands. Commands may be used at any time, but the result
may be order-dependent. For example, ?TABLE will reserve space
in a different place if used after ?REDEF. However, ?ASSGN uses
absolute addresses and is unaffected by ?REDEF.

8

Module length. Module length is limited to 128 bytes.
This guarantees that relative branches within a module will be
within range. It also requires that programs be broken up into
short modules which can be debugged more easily. A module
listing will generally fit on one page. The length of a module
corresponds to the two rightmost digits in the address prompt.
Total program length is limited by available RAM.

‘ Relative branches. Relative branches are allowed only

within a module, for the reason given above. Line labels may
only be referenced by relative branches; this greatly simpli-
fies relocation.

Symbols. All symbols referenced in a module must be defined
before assembly. This normally requires that subroutines be
assembled and stored before they are referenced by a program or
another subroutine. However, they could be assigned an address
using ?7ASSGN or -LOCAL, and entered later. Zero page symbols
must be defined before the first line in which they are refer-
enced.

Other restrictions. Symbol table length is limited to 64
symbols. No offset is permitted with two-byte instructions.

Table 2.2: Error Codes

Command does not exist,

Module length exceeds 128 bKtes.
Number of symbols exceeds 64,
Symbol already defined.

Command legal in edit mode only.

Command does not exist.

Mnemonic does not exist.

Address mode does not exist.

Illegal address mode for mnemonic.

Operand undefined; must be on page zero.
Operand not on page zero,

Offset legal for three-byte instructions only.
Relative branch illegal outside module.
Absolute addressing illegal within module.
Command legal in control mode only.
Illegal line number,

Symbol already defined,

Noo~vyonFwprRro Rgaw»

2.6 Sample Run

05B8 G
?
?TABLE
2

2ASSGN
?ASSGN
o

0C00
0C00
0Coz2
0C03
0C05
- 0C06
LOOP
- 0C06
- 0C02
- 0C03
- 0C06
A22F
CA
10FD
60

- 0C06
?

?

- 0C00
~LOCAL
- 0C00
- 0002
- 0C05
- 0C07
- 0CoA
- 0COD
- OCOE

LI I B O

0C10
0C11

?TABLE
?ASSGN

?BEGIN

-ASSEM
-INSRT

-ASSEM
~-PRINT
DELAY
LOOP

~-STORE
?REDEF
?BEGIN
-LOCAL

-ASSEM
-PRINT
WAVGEN
LOOP

-STORE

WAVE
PAD

-PERIOD

DELAY
LDX#

02T003
LOOP

00T006
LDX#
DEX
BPL
RTS

0070
WAVGEN
BASE

LOOP

00TC11
LDYZ
LDAY
ADCIY
STA
JSR
DEY
BNE
RTS

ocC

1700
0060

2F
LDX#
DEX
BPL
RTS

DEX

2F
LOOP

0061

LDYZ
LDAY
ADCIY
STA
JSR
DEY
BNE
RTS

PERICD
WAVE
BASE
PAD
DELAY

LooP

1¢

2F
LOOP

PERIOD
WAVE
BASE
PAD
DELAY

LOooP

02 07

02

The array WAVE occupies the first twelve bytes of the program
stora?e area. Thus, the module DELAY will begin at address 0C8C
(248C).

Two global symbols were defined with a single use of the
?ASSGN command.

The assembler failed to recognize the opcode LDX# when it
was entered in the wrong field.

The module could not be assembled at first because of the
undefined symbol, LOOP. This was corrected using the -INSRT
command to replace the unlabeled line.

The first line of a listing is labeled with the name of the
module unless another label is given it.

The use of the ?REDEF command means that the module WAVGEN
will begin at 0070.

Both LOOP and BASE are local symbols. The LOOP in one
module will not be confused with that in the other, and BASE
may not be referenced in another module.

The module WAVGEN may call DELAY as a subroutine since DELAY
was entered first.

2.7 Structured Programming

The discipline of structured programming has become increa-
singly popular with the spread of such languages as Pascal.
Structured programming in assembly language is more difficult,
but offers the same advantages. Structured programs are more
likely to run correctly the first time, easier to debug, and
easier for other programmers to understand. Structured pro-
gramming in machine language requires that the programmer accept
the following restrictions on transfer of control.

Blocks. Every forward branch creates a block of one or more
lines of assembly language, between the branch instruction and
the line referenced by the branch., Execution of the block must
begin with the first line of the block; no instruction outside
the block may reference a line within the block. On completion
of a block, control must pass to the line immediately following
the block; no branch in the block may reference a line outside
the block. Blocks may contain blocks and loops.

Loops. Every backward branch creates a loop. The loop
includes the branch instruction and the line it references.
The same restrictions given for blocks also apply to loops.
Loops may contain loops and blocks.

11

Subroutines. Blocks and loops may contain subroutine calls.
Since control returns to the calling block or loop, a subroutine
may be considered as a nested block or loop.

Format. The structure of a module can be emphasized by
indenting blocks and loops. This is illustrated throughout
Section 3. Occasional NOP (EA) instructions were inserted to
delimit blocks and loops. Nested loops or blocks may require
two or three NOPs in a row, but rarely will an assembly language
program contain a four EA series.

12

3.

Data Tables.

0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
02A0
02B0
02Co
02D0
0Z2EO
02F0
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
03A0

LISTING

42
45
41
53
53
58
41
42
52
42
50
5A
49
2B
22
03
08
08
2A
86

52
58
50
45
58
4C
4E
43
44
43
4C
58
20
26
35
02
FE
68
6A
A6
Ccé
76
51
CC
EE
3E
6C

MNETAB, MODTAB,

43
45
50
.53
58
58
43
54
43
42
56
59
27
2D
3A
co
EE
40
FF
Al
24
F6
11
8C
4C
DE

4C
59
50
45
41
43
4D
41
49
43
43
49
19
1C
31
02

43
49
4C
44
54
50
50
41
4E
53
42
58
19
27

43
4E
41
53
58
59
45
53
43
42
56
49
1D
27
63
aQ
18
F8
AQ
25

4C
58
50
45
53
4C
4F
4C
42
45
53
59
1A
38

13

etc.

03A3 Subroutine MATCH.

Search table for match to refe-

rence, X points to search parameters on page zero. Sets
z if match found, returns number of matching record in X.

86
A2
86
AO0
Bl
99
88
10
A6
A4
Bl
Dl
FO
AQ
88
10
c8
DO
60
38
A5
E5
85
BO
c6
Ca
10
60

29
00
27
06
29
30

F8
36

35

30
32
02
FF

F5

0ol

30
34
30
02
31

El

00

STXZ ADL
LDX# 00
STXZ ADH
: LDY# 06
PARAM LDAIY ADL
STAY TBL
DEY
BPL PARAM
LDXZ NUM
RECORD LDYZ HBC
BYTE LDATY TBL
CMPIY RFL
BEQ OK
LDY# FF
OK DEY
BPL BYTE
INY
BNE INCADR
RTS
INCADR SEC
LDAZ TBL
SBCZ LEN
STAZ TBL
BCS DECNUM
DECZ TBH
DECNUM DEX
BPL RECORD
RTS

14

Put address of
search parameter
list in ADL, H,
Move parameters
to workspace.

Compare X records.

First Y+1 bytes
must match.

Mismatch.

All ok?
z set.

Find base address
of next record.

Last record?
z clear.

03D5 Subroutine HEX,

to

B5
(04°)
30
38
E9
29
60

by X to 4 binary bits in A.

00
40
03

07
OF

NUMER

LDAZX
CMP#
BMI
SEC
SBC#
ANDiH
RTS

03El1 Subroutine HX2BIN.

20
¢7.%
oa
oA
oa
a5
E8
20
05
AA
60

D5 03

2D

D5 03
2D

JSR
ASLA
ASLA
ASLA
ASLA
STAZ
INX
JSR
ORAZ
TAX
RTS

IOBUF
40
NUMER

07
OF

Convert ASCII character pointed

Get character.
Number or letter?

Letter; adjust.

Convert to binary.

Convert 2 ASCII characters on
page zero, pointed to by X, to 8 binary bits in X.

HEX

15

Find high byte,

and low byte.

Combine.

03F2 Subroutine BIN2HX. Convert 4 bits in A to an ASCII
character. Store in page zero, X.

c9 OA CMP# oA Number or letter?
30 03 BMI NUMER

18 CLC Letter; adjust.
69 07 ADCH# 07

18 NUMER CLC Convert to ASCII.
69 30 ADC# 30

95 00 STAZX IOBUF Store character.
60 RTS

03FF Subroutine DSPHEX. Convert binary number in A to
two ASCIYI ({(hexadecimal) characters in page zero locations
X, X+1. '

48 PHA Save number.

4Aa LSRA Find high character.
4A LSRA

4a LSRA

4a LSRA

20 F2 03 JSR BIN2HEX

ES8 INX Find low character.
68 PLA

29 OF AND#H OF

20 F2 03 JSR BINZ2HEX

60 RTS

16

040F Subroutine SYM,

entry X in MISCL, H.

38
86
A5
E5
85
A9
85
18
A0
26
26
88
10
38
AS
E5
85
A5
E5
85
60

2D
56
2D
2B
00
2C

02
2B
2C

F9

50
2B
2B
51
2C
2C

X8

SEC
STXZ
LDAZ
SBCZ
STRZ
LDA#
STAZ
CcLC
LDY#
ROLZ
ROLZ
DEY
BPL
SEC
LDAZ
SBCZ
STAZ
LDAZ
SBCZ
STAZ
RTS

0434 Subroutine ADDRSS.
symbol X in ADL, H.

20
a0
Bl
85
c8
Bl
85
60

OF 04
06
2B
29

2B
2A

JSR
LDY#
LDAIY
STAZ
INY
LDAIY
STAZ
RTS

TEMP

MISCL
00
MISCH

02
MISCL
MISCH

X8

SYMTBL
MISCL
MISCL
SYMTBH
MISCH
MISCH

Puts base address of symbol table

Find difference
between last
record and X.

Multiply by 8
bytes per record.

Subtract from
address of
last record.

Puts address corresponding to

SYM
06
MISCL
ADL

MISCL
ADH

17

Get base address.
Get symbol address.

Put in ADL, H.

0443 Subroutine ADDLAB.
to 6 zpage bytes containing symbol.
symbol in X.

Add symbol to table.

A points

Returns number of new

85 29 STAZ ADL ADL,H points

A9 00 LDA# 00 to symbol.

85 2A STAZ ADH

18 CLC

A5 50 LDAZ SYMTBL Find new base

69 08 ADC# 08 address of

85 50 STAZ SYMTBL symbol table.

90 02 BCC NOADDR

E6 51 INCZ SYMTBH

A0 07 NOADDR LDY# 07

A9 FF LDA# FF Set high address
91 50 . STAIY SYMTEL =FF (unassigned).
88 DEY

88 DEY

Bl 29 XFRSYM LDATIY ADL Add symbol to

91 50 STAIY SYMTBL symbol table.

88 DEY

10 FO BPL XFRSYM

A6 56 LDXZ SYMNUM Increment number
EB INX of symbols.

86 56 STXZ SYMNUM

60 RTS

0469 Subroutine NEWSYM. Puts base address of symbol table
record for symbol pointed to by A in MISCL, H and returns
symbol in X. If new, adds to table and sets Z.

85 52 STAZ SYMRFL Set up search.

A2 50 LDX# 50

20 A3 03 JSR MATCH Look up symbol.

FO 05 BEQ OLD

A5 52 LDAZ SYMRFL Not found; add

20 43 04 JSR ADDLAB to symbol table.

20 OF 04 oOLD JSR SYM Address in MISCL, H.
“"E4 56 CPXZ SYMNUM Set z if new.

60 RTS

18

047D Subroutine ENCODE (part 1).
MNE, address mode in X.

A2 42

20 A3 03
FO 03
A9 31

60

86 2E

A2 49

20 A3 03
FO 03
A9 32

60

A5 2E

co 19

10 02

A2 00

c9 30

30 02

A2 08
EA NOTREL

MNEFND

MODFND

NOTIMP

04A2 Subroutine
mnemonic/address

AS 2E

DD C2 02
10 03

A9 33

60

DD CF 02
30 03

A9 33

60

18 NOT2HI
7D DC 02

85 37

AR

BD 05 03

C9 FF

DO 03

A9 33

60

EA OPCLGL

NOT2LO

LDX# 42

JSR MATCH

BEQ MNEFND
LDA# 31
RTS

STXZ MNE

LDX# 49

JSR MATCH

BEQ MODFND
LDA# 32
RTS

LDAZ MNE

CMP# 19

BPL NOTIMP
LDX# 00

CMP# 30

BMI NOTREL
LDX# 08

NOP

ENCODE (part 2).
mode combination.
LDAZ MNE
CMPX MIN
BPL NOT2LO
LDA# 33
RTS
CMPX MAX
BMI NOT2HI
LDA# 33
RTS
CLC
ADCX BASE
STAZ OPCPTR
TAX
LDAX OPCTAB
CMP# FF
BNE OPCIGL
LDA# 33
RTS
NOP

19

Put mnemonic code in

Find mnemonic.

"1" Error-

not found.

Save mnemonic.
Find address mode.
"2" Error-

not found.
Special cases:

Implied mode.

Relative mode.

Check legality of

Legal mnemonic
for address mode?

"3" Too low.

"3" Too high.

'~ Store pointer

to opcode

"3" Illegal.

Continue.

04C6 Subroutine ENCODE (part 3).

Find operand code, if

required, for address modes other than relative and 3-byte
address modes.

A5
co
10
A9
60
E6
co
10
A2
20
86
A9
60
A2
86
c9
10
A2
20
FO
A9
60
20
FO
A9
60
86
A5
co
FO
A9
60
A9
60
EA

37
ip
03
2D

2F
2A
oA
15
El
38
2D

15
52
61
20
50
A3
03
34

34
03
35

38
1c
20
03
36

2D

03

03

04

OPRRQD

NOTIMM

FOUND

OK

DONE

NCTZPG

LDAZ
CMP#
BPL
LDA#
RTS
INCZ
CMP#
BPIL
LDX#
JSR
STXZ
LDA#
RTS
LDX#
STXZ
CMP#
BPL
LDX#
JSR
BEQ
LDA#
RTS
JSR
BEQ
LDA#
RTS
STXZ
LDAZ
CMP#
BEQ

LDA#H#

RTS
LDA#
RTS

NOP

OPCPTR

1D

OPRRQD
2D

BYTES

2A

NOTIMM
15
HX2BIN
SYMPTR
2D

15
SYMRFL
61
NOTZPG
50
MATCH
FOUND
34

ADDRSS
OK
35

SYMPTR
OFFSET
20
DONE
36

2D

20

Consider opcode.

Operand required?

n_n

No; return.
At least 2 bytes.

Immediate addressing.
Find binary value

Set up operand search.

Zpage addressing?
Yes.
Look up operand.

"4" Not found.

"5" Not zpage.

Store operand.
Check for offset.
" SPII

"6" offset illegal.

" _"

OK, return.
Continue.

0508 Subroutine ENCODE (part 4).

if

A2
20
FO
A9
20
86
A5
co
10
E4
10
AS
60
A9
60
EA

required.

50
A3
05
15
43
38
37
69
oa
3c
03
37

2D

0527
check

E4
30
20
C5
DO
A9
60
AS
A2
c9
FO
A2
20
86
E6
A9
60

3C
oa
34
3F
03
38

1cC
00
20
05
1c
El
39
2F
2D

03

04

FOUND

OK

NOTREL

LDX#
JSR
BEQ
LDA#
JSR
STXZ
LDAZ
CMP#
BPL
CPXZ
BPL
LDA#
RTS
LDA#
RTS
NOP

50
MATCH
FOUND
15
ADDLAB
SYMPTR
OPCPTR
69
NOTREL
GLOBAL
OK
37

2D

Subroutine ENCODE (part 5).
legality and find offset.

04

03

OK

STROFS

CPXZ
BMI
JSR
CMPZ
BNE
LDA#
RTS
LDAZ
LDX#
CMP#
BEQ
LDX#
JSR
STXZ
INCZ
LDA#
RTS

GLOBAL
OK
ADDRSS
CRNTAH
OK
38

OFFSET

00

20

STROFS
1c
HX2BIN

OPRDSP

BYTES

2D

21

Look up operand; add

Locock up operand.

Not found:; add
to symbeol table.

Relative addressing?

"7" Error-
branch not local.

w_mn

For absolute addressing,

Operand must
be global or
outside block.

"8" Absolute
mode w/in block.

" SPII

Find offset.

n.v Stay in
edit mode.

0549 sSubroutine CMAND.

A5
C5
FO
18
69
60
A9
85
A2
20
FO
A5
co
10
A9
60
A9
60
A9
48
A9
48
20
6C
60

3a
00
04

4]

00
52
50
A3 03
oc
00
3F
03
30

41

05

75

34 04
29 00

OK

CMODE

FOUND

LDAZ
CMPZ
BEQ
CLC
ADCH
RTS
LDA#
STAZ
LDX#
JSR
BEQ
LDAZ
CMP#
BPL
LDA#
~ RTS
LDA#
RTS
LDA#
PHA
LDA#
PHA
JSR
JMPI
RTS

MODE
IOBUF
OK

0oc

00
SYMRFL
50
MATCH
FOUND
IOBUF
3F
CMODE
30

41

75

ADDRSS
ADL

22

Look up and execute command.

Command legal
for mode?

No; illegal.
Return " 9!! or (1] K“

Look up command.

Not found.

"0" Error-—
input mode.
A" Error-
command mode.
Set up return.

Get address.
Execute command.

0577 Subroutine FIN., Add line to program; assign address
to label, if any.

20 40 09 JSR INSERT Adjust if inserting.
A4 2F LDYZ BYTES

a8 DEY

B9 37 00 ADDLIN LDAY OPCPTR Add line

91 3E- STAIY CRNTAL to program.

88 ' DEY

10 F8 BPL ADDLIN

A5 07 LDAZ LABEL

c9 20 CMP# 20 "sp"

FO 10 BEQ INCADR Any label?

A9 07 LDA# 07 Yes. Add to

20 69 04 JSR NEWSYM symbol table

AOC 07 . LDY# o7 if new, and

A5 3F LDAZ CRNTAH assign address.
91 2B STAIY MISCL

88 DEY

A5 3E LDAZ CRNTAL

91 2B STAIY MISCL

18 INCADR CIC

A5 3E LDAZ CRNTAL Increment pointers.
65 2F ADCZ BYTES

85 3E STAZ CRNTAL

18 CLC

A5 3D LDAZ PRGLEN

65 2F ADCZ BYTES

85 3D STAZ PRGLEN

10 03 BPL OK

A9 42 LDA# 42 "B" Error-

60 RTS program overflow.
24 56 OK BITZ SYMNUM

50 03 BVC OK2

A9 43 LDA# 43 "C" Error-

60 RTS symbol overflow.
A9 2D 0K2 LDAH - 2D

60 RTS

23

05B8 Main program.
into source code.

D8
A2
BD
95
CA
10
A9
85
AQ
A2
94
CA
10
A2
Cco
10
A5
A2
20
AS
A2
20
A2
86
A9
85
20
A5
Cc9
DO
A5
Cc9
Do
20
co
DO
20
A2
FO
20
18
90
EA

18
E9
3F

F8
3F
00
20
21
01

FB
3F
3F
10
3F
02

3E
04
FF

2D
3a
CL
2F
5D
3Aa
2D
04
01
20
0C
7D
2D
C3

77

00
03

49

B6

02

03

03

07

04

05

05

INIT

START

CLEAR

GETLIN

CMODE

NG
EXEC

DONE

CLD
LDX#
LDAZ
STAZX
"DEX
BPL
LDAH
STAZ
LDY#
LDX#
STYZX
DEX
BPL
LDX3#
CMP#
BPL
LDAZ
LDX#
JSR
LDAZ
LDX#
JSR
LDX#
STXZ
LDA#
STAZ
JSR
LDAZ
CMP#
BNE
LDAZ
CMP#
BNE
JSR
CMP#
BNE
JSR
LDX#
BEQ
JSR
cLC
BCC
NOP

18

PRMTAB
CRNTAH

INIT

3F

TIOBUF

20

21
IOBUFl

CLEAR
3F
3F
GETLIN
CRNTAH
02
DSPHEX
CRNTAL
c4
DSPHEX
2D
MODE
oL
BYTES
INPUT
MODE
2D
CMODE
IOBUF1
20
EXEC
ENCODE
2D
NG
FIN
00
DONE
CMAND

START

24

Process command, or translate input

Initialize
program parameters.

"?2" Set.
command mode.

1] SPII

Clear I/0 buffer
except error code.
"?" Command.
Command mode?

No; input mode.
Display address.

Ll L1}

=" Input.
Save mode.
Initialize.

Input line.

Mode?

Command mode?
Input mode command?
" SP"

If neither,
translate line.

L1} — [1}

If line legal,

add to program.

If command,
execute it.

Repeat until reset.

0610
input mode.

A9
20
FO
A9
60
86
a9
85
85
AQ
91
A5
c8
91
A9
60

07
69
03
44

3c
00
3E
3D
06
2B
3F

2B
2D

? BEGIN.

04

OK

LDA#
JSR
BEQ
LDA#
RTS
STXZ
LDA#
STAZ
STAZ
LDY#
STAIY
LDAZ
INY
STAIY
LDA#
RTS

o7 .
NEWSYM
OK

44

GLOBAL
00
CRNTAL
PRGLEN
06
MISCL
CRNTAH

MISCL
2D

25

Add module name to symbol table; enter

Add name to
symbol table.

"D" Error-

label in use.

Set local cutoff.
Clear pointers.

Set start address
=CRNTAL, H.

II”!I Set
input mode.

062E

A5
Cc9
DO
A9
60
A9
20
FO
A9
60
A2
20
AO
8A
91
A2
20
88
8A
9l
a9
A2
95
CA
10
20
A5
10
EA

07
20
03
3F

07
69
03
44

OE
El
07

2B
10
El

2B
20
oc
07

FB
5D
07
CcC

7?7 ASSGN.

04

03

03

07

START

MORE

NOTOLD

CLEAR

LDAZ
CMP3#
BNE

LDA#
RTS
LDA#
JSR
BEQ
LDA#
RTS
LDX#
JSR
LDY#
TXA
STAIY
LDX#
JSR
DEY
TXA
STAIY
LDA#
LDX#
STAZX
DEX
BPL
JSR
LDAZ
BPL
NOP

26

LABEL
20
MORE

3F

07

NEWSYM

NOTOLD
44

OE
HX2BIN
07

MISCL
10
HX2BIN

MISCL

20

oC
LABEL

CLEAR
INPUT
LABEL
START

Assign addresses to labels.

"SP"
Label supplied?
No; done,

Add symbol to table.

"D" Error-
label in use.
Assign address.

"SP"
clear I/0 buffer
except prompt.

Next symbol.

0665
addresses.

20
c9
DO
A9
60
A9
60

2E
44
03
3Aa

2D

0672

A2
20
86
A2
20
86
A9
60

07
El
41
09
El
40
3F

-LOCAL.

06

OK

?REDEF.

03

03

Add local symbols to symbol table; assign

JSR
CMP#
BNE
LDA#
RTS
LDA#
RTS

?ASSGN
44
OK

3A

2D

Add to

symbol table
if new.

":" BError-
symbol in use.
"-" gstay in
input mode.

Redefine module start address.

LDX#
JSR
STXZ
LDX#
JSR
STXZ2
LDA#
RTS

07
HX2BIN
MDLADH
09
HX2BIN
MDLADL
3F

27

Find high address.

Store.
Find low address.

Store.
"?2" stay in
command mode.

0683

AO
Bl
AA
BD
91
EO
10
60
c8
Bl
EO
10
91
60
86
AA
20
A5
AO
A6
EO
10
91
60
EO
10
38
E9
38
ES
91
60
18
c8
71
88
91
c8
A5
69
91
60

00
3E

05
57
1D
0l

3E
2A
03
57

2E

34
29
01
2E
61
03
57

69
09

02

3E
57

3E
57
2Aa

00
57

Subroutine ASMBL.
store result at (OBJECT).

03

04

OPREQ

NOTIMM

NOTZPG

NOTREL

LDA#
LDAIY
TAX
LDAX
STAILY
CPX#
BPL
RTS
INY
LDAIY
CPX#
BPL
STAIY
RTS
STXZ
TAX
JSR
LDAZ
LDY#
LDXZ
CPX#
BPL
STALY
RTS
CPX#
BPL
SEC
SBC#
SEC
SBCZ
STAIY
RTS
CLC
INY
ADCIY
DEY
STAIY
INY
LDAZ
ADC#
STAIY
RTS

Translate line into machine code;

Return length-1 in Y.

00
CRNTAL

OPCTAB
OBJECT
ip
OPREQ

CRNTAL

2A

NCTIMM
OBJECT

MNE

ADDRSS

ADL

ol

MNE

6l

NOTZPG
OBJECT

69
NOTREL

02

CRNTAL
OBJECT

CRNTAL
OBJECT
ADH

00
OBJECT

28

Get first byte.

Look up opcode.

No operand.

Address mode?
Immediate.

Get address.

Zero page.

Relative.
Compute branch.

Absolute.

Add offset.

06CB Subroutine LOCSYM,

A6
E8
20
c9
DO
a0
Bl
29
88
10
86
20
A6
E4
30
60

O6EB

ic

34
FF
11
05

2B

00

F8
2B
Al
2B
56
E3

-ASSEM.

NXTSYM
04

SHOW
00

08

DEFIND

Displays undefined local symbols.

LDXZ GLOBAL
INX
JSR ADDRSS
CMP# FF
BNE DEFIND
LDY# 05
LDAIY MISCL
STAY IOBUF
DEY |
BPL SHOW
STXZ MISCL
JSR OUTLIN
LDXZ MISCL
CPXZ SYMNUM
BMI NXTSYM
RTS

Assemble module:

locations beginning at (MDLADL, H).

20
A9
C5
FO
60
A9
85
A5
85
AS
85
20
84
38
AS
65
85
90
E6
38
AS
65
85
c5
30
A9
60

CB
2D
00
ol

00
3E
40
5T
41
58
83
2D

57
2D
57
02
58

3E
2D
3E
3D
ES
2D

06

ALLOK

06 NEXTLN

SKIP

JSR LOCSYM

LDA# 2D

CMPZ IOBUF

BEQ ALLOK
RTS

LDA# 00

STAZ CRNTAL

LDAZ MDLADL

STAZ OBJECT

LDAZ MDLADH

STAZ OBJCT1
JSR ASMBL
STYZ TEMP
SEC
LDAZ . OBJECT
ADCZ TEMP
STAZ OBJECT
BCC SKIP

INCZ OBJCT1

SEC
LDAZ CRNTAL
ADCZ TEMP
STAZ CRNTAL
CMPZ PRGLEN
BMI NEXTLN

LDA# 2D

RTS

29

For local symbols,
see if defined.

If not,
display symbol.

If more
symbols, repeat.

store result in RAM

Check for local
undefined symbols.

If any; return.

Else, assemble.
Initialize pointers.

Translate a line.
Save bytes -1.
Increment pointers.
For object code.

For source code.

Finished?
*-" Stay in
edit mode.

071F

A5
c9
Do
A9
60
A9
20
FO
A9
60
AQ
A5
91
c8
AS
91
A2
20
8A
18
65
85
90
E6
A9
A2
95
CA
10
20
A5
10
EA

07
20
03
3F

oY)
69 04
03
44

06
40
2B

41
2B
OE
ELl 03

40
40
02
41
20
ocC
07

FB
5D 07
07
C5

? TABLE.

START

MORE

NOTOLD

NOINC

CLEAR

LDAZ

CMP#
BNE
LDA#
RTS
LDA#
JSR
BEQ
LDA#
RTS
LDY#
LDAZ
STAIY
INY
LDAZ
STAIY
LDX#
JSR
TXA
CLC
ADCZ
STAZ
BCC
INCZ
LDA#
LDX#
STAZX
DEX
BPL
JSR

BPL

NOP

30

LABEL

20
MORE
3F

07

NEWSYM

NOTOLD
44

06
MDILADL
MISCL

MISCL
OE
HX2BIN

LABEL

CLEAR
INPUT
LABEL
START

Allocate space for tables.

11} SP"
Any label?
No; done.

Add symbol to
symbol table.
"D" Error-

not new.
Assign address.

Allocate space
by incrementing
MDLADL, H.

" SP“

Clear I/O buffer
except prompt.

Another symbol?

075D Subroutine INPUT.
Input up to 5 words.

20
A2
B5
20
E8
EO
30
A2
AS
85
20
c9
DO
00
c9
DO
60

2F
00
00
A0

06
F6
00
06
2D

2A 1E

1B
01

oD
01

co 08

DO
CA
E6
A9
c9
Do
EA
20
E8
Cc6
10
A9
85
Cc9
30
95
ES8
cé
18
90
EA

1E

1E

PROMPT

START

NOTBRK

NOTCR

NOTBSP

TAB

NOTSP

DONE

Special keys:

JSR CRLF
LDX# 00
LDAZX IOBUF
JSR OUTCH
INX
CPX# 06
BMI PROMPT
LDX# 00
LDA# (6]
STAZ TEMP
JSR GETCH
CMP# 1B
BNE NOTBRK
BRK
CMP# oD
BNE NOTCR
RTS
CMP# 08
BENE NOTBSP
DEX
INCZ TEMP
LDA# 08
CMP# 20
BNE NOTSP
NOP
JSR OUTSsP
INX
DECZ TEMP
BPL TAB
LDA# 06
STAZ TEMP
CMP# 20
BMI DONE
STAZX IOBUF
INX
DECZ TEMP
CLC
BCC START
NOP

31

Prompt w/ first word in IOBUF.
ESC, CR, BKSP, SP,

New line.
Prompt w/
first 6 chars.

Initialize pointer.
7 chars/word
includes space.
Input a char.

1 ESCII

Break.
n" CRII

End of line.
IIBS 1"

Backspace.

un SP 1"

Next word.
Add spaces
to £ill word.

If not a
control char:
Add char to
I/0 buffer.

Next character.

07A6 =STORE. Clear local symbols; assign address to module.
Increment MDLADL,H to prevent overwrite by next module.
Return to command mode.

A6 3C LDXZ2 GLOBAL Clear local

20 OF 04 JSR SYM symbols from
86 56 STXZ SYMNUM symbol table.
A5 2B : LDAZ MISCL

85 50 ~ STAZ SYMTBL

A5 2C LDAZ MISCH

85 51 STAZ SYMTBH

A0 07 LDY# 07 Assign address
A5 41 LDAZ MDLADH to module.

91 2B STAIY MISCL

88 DEY

A5 40 . LDAZ MDLADL

91 2B STAIY MISCL

18 CLC

65 3D ADCZ PRGLEN Increment MDLADL,H
85 40 STAZ MDLADL by length of
90 02 BCC SKIP module.

E6 41 INCZ MDLADH

A9 3F SKIP LDA# 3F "?" Return to
60 RTS command mode.

32

Table MODLIM. Lower opcode pointer limits for modes.

07CC (00 19 1D 2A 3P 4P 51 59 61 69 80 90 9C

07D2 Subroutine DECODE. Decode line pointed to by CRNTAL
and OBJECT. Put line in IOBUF, length in BYTES.

AS 01 LDA# ol Assume 1 byte.
85 2F STAZ BYTES

A2 22 LDX# 22 Clear I/0 buffer.
A9 20 LDA# 20

95 00 CLEAR STAZX IOBUF

CA : DEX

10 FB BPL CLEAR

A6 56 ' LDXZ SYMNUM Check for label.
20 34 04 START JSR ADDRSS Compare address
A5 3E LDAZ CRNTAL to current line.
Cc5 29 CMPZ ADL

DO 04 BNE SKIP

A5 3F LDAZ CRNTAH

C5 2Aa CMPZ ADH

DO OC SKIP BNE SKIPp2 If they match,
AD 05 LDY# 05 put label in

Bl 2B LABL LDATY MISCL I/0 buffer.

99 07 00 STAY LABEL

88 DEY

10 F8 BPL LABL

A2 01 LDX# 0l End search.

CA SKIP2 DEX

E4 3C CPXZ GLOBAL Consider local
10 EO BPL START symbols only.
A0 00 LDY# 00 Get opcode.

Bl 57 LDAIY OBJECT

A2 00 LDX# 00 Put opcode in
20 FF 03 JSR DSPHEX I/0 buffer.

Bl 3E LDAIY CRNTAL Decode opcode.
85 37 STAZ OPCPTR

33

0815 subroutine DECODE (part 2).
opcode; put in I/0 buffer.

A2
c9
10
A2
DD
30
86
A2
CA
10
A5
oA
AR
BD
85
BD
85
Bl
38
A6
FD
85
oA
18
65
AA
BD
85
BD
85
BD
B85
A5
co
10
60
E6

0c
1p
02
0l
ccC
04
3Aa
00

F4
3A

A8
11
A9
12
3E

3a
DC
2D

2D

00
CE
0l
OF
02
10
37
1p
ol

2F

07

02

02

02

02

02

02

FNDMOD

NOPE

OPRND

LDX#
CMP#
BPL
LDX#
CMPX
BMI
STXZ
LDX#
DEX
BPL
LDAZ
ASLA

. TAX

LDAX
STAZ
LDAX
STAZ
LDAIY
SEC
LDXZ
SBCX
STAZ
ASLA
CLC
ADCZ

oc
1D
FNDMOD
0l
MODLIM
NOPE
MODE
00

FNDMOD
MODE

MODTAB
OPCOD3

MODTAB Ol

OPCOD4
CRNTAL

MODE
BASE
TEMP

TEMP

MNETAB
OPCODE
MNETAB
OPCOD1

MNETAB 02

OPCOD2
CPCPTR
1D
OPRND

BYTES

34

0l

Decode address mode and

Find mode.
Any operand?

If not, only check
implied and accum.

In range

for mode?

Yes; save mode.
End search.

Put mode in
I/0 buffer.

Find mnemonic.

Mnemonic number.
Multiply by 3.

Get ASCII.
Put mnemonic in
I1/0 buffer.

Operand needed?

No; finished.
At least 2 bytes.

085E Subroutine DECODE (part 3). Decode operands and
offset, if any.

A0 Ol LDY# 0l

Bl 57 LDAIY OBJECT Machine code
A2 02 LDX# 02 for operand in
20 FF 03 JSR DSPHEX I/0 buffer.
A5 37. LDAZ OPCPTR

C9 2A) CMP# 2A Immediate mode?
10 08 BPL NOTIMM

Bl 3E LDAIY CRNTAL Yes; put hex
A2 15 LDX# 15 number in

20 FF 03 JSR DSPHEX I/0 buffer.
60 RTS

Bl 3E NOTIMM LDATIY CRNTAL No; look up
AA . TAX operand.

20 OF 04 JSR SYM

A0 05 LDY# 05 Put operand
Bl 2B SHOWOP LDAIY MISCL in IOBUF.

99 15 00 STAY OPRAND

88 DEY

10 F8 BPL SHOWOP

A5 37 LDAZ OPCPTR 3-byte instruction.
C9 69 CMP# 69

10 01 BPL ABS

60 RTS No; done

E6 2F ABS INCZ BYTES Yes.

A0 02 LDY# 02

Bl 57 LDATY OBJECT Add code to
A2 04 LDX# 04 I/0 buffer.
20 FF 03 JSR DSPHEX

Bl 3E LDATY CRNTAL Offset?

FO 05 BEQ DONE

A2 1C LDX# ic Show offset.
20 FF 03 JSR DSPHEX

60 DONE RTS

08Al1 Subroutine OUTLIN. Output line from IOBUF.

20 2F 1E JSR CRLF New line.

A2 00 LDX# oc

B5 00 NXTCHR LDAZX TOBUF Output one
20 AQ 1E JSR OUTCH character at
E8 INX a time,

EOQ 23 CPX# 23 until done.
30 F6 BMI NXTCHR

60 RTS

35

08B1

line numbers.

00
3E
40
57
41
58
07
El
59
0B
El
S5A
02
39
D9
3E
59
02
39
SA
02

57
2F
57
02

3E
2F
3E

C3

03

03

07

03
08

NXTLIN

SKIP

SKIP2

NOPRNT
HIGH
LOW

NOINC

Subroutine PRNTCK.

LDA# 00
STAZ CRNTAL
LDAZ MDLADL
STAZ OBJECT
LDAZ MDLADH
STAZ OBJCT1
LDX# 07
JSR HXZ2BIN
STXZ FIRST
LDX# 0B
JSR HXZBIN
STXZ LAST
LDA# 02
STAZ WRONG
JSR DECODE
LDAZ CRNTAL
CMPZ FIRST
BNE SKIP
DECZ WRONG
CMPZ LAST
BNE SKIP2
DECZ WRONG
CMPZ FIRST
BMI LOW
CMPZ LAST
BPL HIGH
BITZ PRNTOK
BMI NOPRNT
LDX# 1F
JSR DSPHEX
JSR OUTLIN
NCP
NOP
CLC
LDAZ OBJECT
ADCZ BYTES
STAZ OBJECT
BCC NOINC
INCZ OBJCT1
CLC
LDAZ CRNTAL
ADCZ BYTES
STAL CRNTAL
CMPZ PRGLEN
BMI NXTLIN
RTS

36

Check that FIRST and LAST are legal
Print lines in range if PRNTOK=1.

Initialize.

Decode range.

Initialize flag
for mismatch.
Decode line.

Decrement WRONG
each time a
match is found.

In range
for print?

Yes, but
print wanted?
Yes; add

line number.
Print line.

Update pointers.

Last line?
If not, repeat,

090D -pRINT. Output lines in specified range.

A9 01 LDA# ol Set print flag.

85 38 STAZ PRNTOK

20 B1 08 JSR PRNTCK Run print routine.
A9 2D LDA# 2D "." Stay in

60 RTS edit mode.

0917 subroutine FIXSYM,

labels.

Ab
20
C5
DO
A5
c5
30
A4
c4
10
A9
AQ
91
18
65
A0
91
EA
CA
E4
10
60

56
34
3F
1a
29
3E
13
29
5A
06
FE
07
2B

2F
06
2B

3cC
DA

04

Adds RYTES to addresses of line
Used by -INSRT and subroutine INSERT.

LDXZ SYMNUM For local symbols,
START JSR ADDRSS find address.
CMP2Z CRNTAH Line label?
BNE NOTLAB
LDAZ ADL Yes, but in
CMPZ CRNTAL move zone?
BMI NOREV
ILDYZ ADL Yes.
CPYZ LAST Line deleted?
BPL NEWADR
LDAH# FE Yes.
LDY# 07 Delete symbol.
STAIY MISCL
NEWADR CLC Fix address
ADCZ BYTES
LDY# 06
STAIY MISCL
NOREV NOP
NOTLAB DEX More local
CPXZ GLOBAL: symbols?
BPL START

RTS

37

0940 Subroutine INSERT.
current line.

A5
c5
DO
60
85
20
18
A5
65
85
AS
85
A5
38
E5
AB
Bl
91
88
10
60

3E
3D
ol

5A
17

3E
2F
29
3F
2A
3D

3E

3E
29

F9

09

INS

MOVE

LDAZ
CMPZ
BNE
RTS
STAZ
JSR
CLC
LDAZ
ADCZ
STAZ
LDAZ
STAZ
LDAZ
SEC
SBCZ
TAY
LDATY
STAIY
DEY
BPL
RTS

CRNTAL
PRGLEN
INS

LAST
FIXSYM

CRNTAL
BYTES
ADL
CRNTAH
ADH
PRGLEN

CRNTAL

CRNTAL
ADL

MOVE

38

Open gap in program to insert
Adjust symbol table.

Inserting line?

Nope.
Fix symbols.

Set up offset
pointer for move.

Move lines to
open gap.

0965 -INSRT. Check supplied line numbers for legality.
Set program pointer to first line number; delete to second.

A9 FF LDA# FF *~ Legal line?
85 38 STAZ PRNTOK

20 Bl 08) JSR PRNTCK

C5 5A CMPZ LAST Last+1l is

DO 02. BNE NOTLST legal line
cé6 39 : DECZ WRONG number.

AS 39 NOTLST LDAZ WRONG

F0O 03 BEQ 0K

A9 25 LDA# 25 """ Error-

60 RTS illegal address.
A5 59 0K LDAZ FIRST

85 3E STAZ CRNTAL

A6 5A LDXZ LAST Deletion needed?
FO 26] BEQ DONE

38 SEC Fix addresses
E5 5A SBCZ LAST for labels.
85 2F STAZ BYTES

20 17 09 JSR FIXSYM

A5 3F LDAZ CRNTAH Set pointer
85 5B STAZ LAST1 for move.

A5 3D LDAZ PRGLEN Find bytes

38 SEC to move.

ES5 3E SBCZ CRNTAL

85 2D STAZ TEMP _

A5 3D LDAZ PRGLEN Correct length
18 CLC of program,.
65 2F ADCZ BYTES

85 3D STAZ PRGLEN

A0 00 LDY# 00 Move lines to
Bl 5A MOVE LDAIY LAST close gap.

91 3E STAIY CRNTAL

Cc8 INY

C4 2D CPYZ TEMP

30 F7 BMI MOVE

EA NOP

A9 2D DONE LDA# 2D "-" Stay in
60 RTS edit mode.

09AA Move first nine entries in symbol table to RAM.
Entry point for assembler in ROM.

AZ 47 . LDX# 47

BD B8 09 MOVSYM LDAX ROM

9D B8 09 STAX RAM

CA DEX

10 EF7 BPL MOVSYM
4C B8 05 JMP MAIN

39

Table

0sCo
09D0
09EC
09F0

COMAND.

3F 42 45
3F 52 45
3F 54 41
2D 50 52

First

47
44
42
49

49
45
4C
4E

nine entries in symbol table;

4E 10
46 72
45 1F
54 0D

06
06
07
09

40

09B8
09C8
09D8
09ES8
09F8

3JF
2D
2D
2D
2D

53
4F
53
54
4E

53
43
53
4F
53

4E
4C
4D
45
54

2E
65
EB
A6
65

commands.

06
06
06
07
09

L., THEORY OF OPERATION
4.1 Encoding Scheme

The assembler owes its speed and memory efficiency to the
encoding scheme by which each line of assembly language is
stored. As each line is entered, it is translated into an
encoded form which is the same length as its machine language
equivalent. This is done by Subroutine ENCODE. The result may
be seen at the address given in the prompt for each line.

Opccde. The first byte in the coded assembly language for
a line is a pointer to the opcode for the instruction. The
opcodes are found in OPCTAB, but in an unusual order. They are
grouped by address mode, with the address modes in the order
given in Section 2.3. This arrangement simplifies coding, since
the modes are arranged in order of number of bytes required.
The mnemonics have also been rearranged, to eliminate gaps in
the table.

Operand. For two- and three-byte instructions, the second
byte in the assembly code is for the operand. This is just a
hexadecimal number for immediate addressing, For the other
address modes, it is the number of the symbol table entry for
the operand. Each symbol table entry is eight bytes--six ASCII
characters followed by the low and high address for the symbol.
Hexadecimal FF for the high address indicates that no address
has yet been assigned to the symbol.

Offset. For three-byte instructions, the third byte in the
assembly code is the offset described in Section 2.3. This will
be zero unless an offset is supplied.

Listing. When the -PRINT command is used, the encoded as-
sembly language must be translated back into strings of ASCII
characters. This is done by Subroutine DECODE.

Assembly. With this encoding scheme, final assembly is re-
duced to one or two table look-ups for each line. Most of the
work is done during the carriage return time as each line is
entered.

4,2 Useful Subroutines

Some of the subroutines in the assembler may be of use in
user programs. HX2BIN and DSPHEX are examples. Subroutine
MATCH is a powerful string-search routine., It requires the
following information from the calling routine: base address
of the last record in the table to be searched, start address
of the string to be compared, record length for the table,
number of the highest byte which must match (the record may
contain additional information)}, and the number of the last
record in the table. This information is passed in the form

41

of a single byte in the X register, which points to a page-zero
array of these parameters. These correspond to the symbols

TBL through NUM in Table 4.2. X is also used to return the
number of the record which matches the supplied string. The
zero flag is cleared if no match is found.

Table 4.1: Important Arrays and Pointers.

Array Assembly Assembled Symbol
language program table
) module
Address 0C00~-0C7F 0c80- 2?7 09B8-0BB7?
range (2A00-2A7F) (2a80- ?7) (27B8-29B7)
Pointer CRNTAL,H MDLADL ,H SYMTBL,H
003E,003F 0040,0041 0050,0051
Points to current first line latest
line of module symbol
Initial 0C00 0c8o 09FB*
value {2a00) (2A80) {27F8B)
Initialized 0 2E9** 02EA,02EB Q2FA,02FB
from (20E9) (20EA, 20EB) (20FA, 20FB)

?%? Limited by available RAM.

() Address for version beginning at 2000.

#* First part of symbol table reserved by assembler.
##% High order address; low order initialized to zero.

42

Table 4.2:

IOBUF
LABEL
OPCODE
OPRAND
USER
ADL
ADH
MISCL
MISCH
TEMP
MNE
BYTES
TBL
TBH
RFL
RFH
LEN
HBC
NUM
OPCPTR
PRNTOK
WRONG
MODE
SAVX
GLOBAL
PRGLEN
CRNTAL
CRNTAH
MDLADL
MDLADH
MNETBL
MODTBEL
SYMTBL
SYMTBH
SYMRFL
SYMRFH
SYMNUM
OBJECT
OBJCT1
FIRST
LAST
LAST1

0000
0007
Q00E
0015
0023
0029
002A
002B
002C
002D
002E
Q02F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0034
003B
003C
003D
003E
003F
0040
0041
ook2
oobo
0050
0051
0052
0053
0056
0057
0058
0059
005A
0058

Global Symbols on Page Zero

I/0 buffer; prompt or command field.

I1/0 buffer; label field.

I/0 buffer; opcode field.

I/0 buffer; operand field.

Six bytes available for use by user commands.
Low address pointer for various subroutines.
High address pointer.

Miscellaneous uses.

Ditto.

Various temporary uses.

Mnemonic code.

Lengths of lines, etc.

Low address pointer for table; used by MATCH.
High address pointer (Subroutine MATCH).

‘Low address pointer for string to be matched.
High address pointer (MATCH).

Length of each record in table (MATCH).
Number of highest byte in record which must match.
Number of highest record in table (MATCH). .
Pointer to opcede in OPCTAB.

Flag to enable printing by Subroutine PRNTCK.
Flag for illegal line numbers (PRNTCK).

Code for address mode.

Used to preserve X register.

Number of last global symbol.

Length of source code.

Low address pointer to current source code line.
High address pointer.

Module pointer, low address.

Module pointer, high address.

Parameters for MNETAB (see TBL to NUM above).
Parameters for MODTAB.

Low address pointer to last entry in symbol table.
High address pointer.

Low address pointer for symbol to be compared.
High address pointer.,

Number of last symbol.

Low address pointer to object code.

High address pointer.

First line in range for print (PRNTCK).

First line after print range.

High order address; same as CRNTAH.

43

Table 4.3:

*MNETAB
#MODTAB
*MIN
*MAX
*BASE
*PRMTAB
*USRPRM
*#QPCTAB
MATCH
HEX
HX2BIN
BINZHX
DSPHEX
SYM
ADDRSS
ADDLAB
NEWSYM
ENCODE
CMAND
FIN
MAIN
?BEGIN
7ASSGN
-LOCAL
?REDEF
ASMBL
LOCSYM
-ASSEM
?TABLE
INPUT
-STORE
*MODIL.IM
DECODE
OUTLIN
PRNTCK
~-PRINT
FIXSYM
INSERT
-INSRT

* Table.

0200
02A8
02C2
02CF
02DC
02E9
0301
0305
03A3
03D5
03E1
03F2
03FF
OLoF
o434
o443
oL69
047D
0549
0577
0588
0610
062E
0665
0672
0683
06CB
06EB
O71F
075D
0746
o7ce
07D9
08A1
08B1
090D
0917
0940
0965

Other Global Symbols

Three-character ASCII mnemonics for instructions.
Two-character ASCII mode codes.

Minimum legal value for MNE for each mode.
Lowest illegal value of MNE for each mode.

Base value for mode added to MNE to get OPCPTR.
Initialization values for CRNTAH through SYMNUM.
Four bytes available for user parameters.
Machine language opcodes pointed to by OPCPTR.
Search table for match to reference.

ASCII character to four bits.

Two ASCII characters on page zero to eight bits.
Four bits to ASCII character on page zero.

Eight bits to two ASCII characters, page zero.
Address of symbol table entry X in MISCL, H.
Address for symbol X in ADL, H,

Add symbol to table; return number in X.

Add symbol if new; call SYM.

Encode assembly language line; update symbols.
Look up and transfer control to command.

Add encoded line to program.

Main program; do command or encode line.

Add name to symbols; enter edit mode.

Assign addresses to global symbols.

Assign addresses to local symbols.

Redefine module pointer.

Translate line into machine code.

Display undefined symbols.

Assemble module; store at MDL,H.

Reserve space for arrays.

Prompt with IOBUF; accept input line,

Save module; clear local symbols; end edit mode.
Lower OPCPTR 1limit for each address mode.
Convert source code to ASCII line.

Output line from IOBUF as ASCII.

Check line numbers; print lines if enabled.
Output lines in range.

Revise addresses of symbols in move range.

Open gap in source code for insert; fix symbols.
Insert and/or delete lines.

44

WAS
SSHAAv
WEASXIA
NITLOO
XHZNTId
XHHdSA
WXS
XHZNIg
XdHdSa
WAS
SsSHaav
Ha00da
XHH
NIFGZXH
A0INYd
LUSNI-

NITLNO
XHZNIE
XHH4ASA
HWAS
XHZNId
XHHdSd
NXS
Ssyaav
elefefeciel
XHH
NIdZXH
ADINYd
ONTHd -

NZXS
HY0LS-

WAS
Ssyaav
THNSY
NITLOO
WAS
sSsyaav
WXSDO1
WHESSV-

XHH
NIEZXH
JHIHHS

LAANT
XJH

NIdZXH
WAS
avIaay
HOLVI

WASMEN

NDSSVé
IVDOTI-

LOdNT
XdH

NIFZXH
NAS
gaviIaav
HOLVI

WASMIN

NDSSVe

NAS
gyIaayv
HOLVA
WXSMIN
NIDdd4

seInpoy Jo AYyoJedsTH !4'4 °TqBL

LOdNI
XdH

NI€ZXH
XS
gVIiaav
HOLVH

WASMEN

dTEVLS

(spurwwO))
WXS

SSy¥aav

HOLVIN

WVYD0ud NIV

45

5. MODIFICATION

Some users may wish to modify the assembler to expand its
capabilities, or for use on another system. Sections 3 and b
should prove particularly useful to these users. Some comments
on specific modifications are given below. To use the assembler
on another 650X system, different I/0 routines would probably
be required. The assembler might also have to be relocated.

5.1 Changing Special Key Definitions

Some terminals lack "escape" or "backspace" keys. Another
key may be used by storing its ASCII code at 0776 (2576) for
escape, or 0780 (2580) for backspace. Refer to Subroutine INPUT
in Section 3.

5.2 Moving Tables

The ?REDEF command temporarily changes the memory location
for storage of assembled modules. The assembler can also be
permanently modified to store the assembled modules, assembly
language, or symbols at a different location.

Initialization value. The location of each array is deter-
mined by the initial value of its corresponding pointer. The
last line in Table 4.1 gives the source of this initialization
value for each array. By changing these values, the array(s)
can be initialized to a different location. The current line
pointer low order address is always initialized to zero; only
the high address can be changed in this way. Both low (first
byte) and high (second byte) order addresses can be changed for
the other pointers.

Symbol table. The first nine entries (72 bytes) in the
symbol table are essential to the assembler, because they are
symbols and addresses for the assembler commands. They must be
moved if the initialization value for the symbol table is changed.
Note that the initialization value points to the ninth symbol,
not the first.

5.3 Adding Custom Commands
User commands may be added in the form of subroutines.

Prompt symbols. Command subroutines must return the appro-
priate prompt symbol in the accumulator: 3F (?) for control
mode or 2D (-) for edit mode. Or, an error code may be returned;
these must be greater than 3F for control mode, and less than

3F for edit mode. Error codes should be printing ASCII charac-
ters.

Adding to symbol table. The ASCII code for the command,
beginning with the correct mode prompt symbol, should be entered

46

in the first six bytes available in the symbol table. This
would start at 0AOO (2800) for the first user command. The
subroutine address should be stored in the next two bytes, low
order first. The initialization value at 02FA, 02FB (20FA,20FRB)
must be incremented by eight. (See Section 5.2) The initiali-
zation value for the top symbol number at 0300 (2100) must be
incremented by one.

5.4 Relocation

The assembler may be relocated using a relocation routine
such as that in The First Book of KIM. The 0200 version of the
assembler starts at address 0200 and ends at 09FF. It contains
blocks of data at 0200-03A2, 07CC-07D8, and 09B8-09FF inclusive.
The assembler should be relocated an even multiple of 256 bytes,
so that it begins at a page boundary, e.g. 0200, 2000, 0400,
etc.

The relocation routine mentioned above will correct ad-
dresses for subroutine calls, but table references and pointers
must be corrected by hand. Since the assembler is relocated an
even number of pages, only the high order address must be cor-
rected. For example, to relocate the 0200 version to start at
0800, add six to the number currently at each of the addresses
below,

Pointers. Addresses 02ED, O2F4, and 02FB contain initial-
ization values for pointers, as do addresses 02E9 and 02EB.

Command return. The value at address 056B is pushed on the
stack as the high order address for return from a command,

Data. Addresses O4A6, OLAE, O4B7?, O4BD, O5BD, 068A,083E,
082F, 0834, 081F, 0848, 084D, and 0852 contain high order ad-
dresses for table references.

Symbol table. Each of the first nine entries in the symbol
table contains six ASCII characters, corresponding to a command,
followed by the low and high order address for the command sub-
routines. The high addresses, at 09BF to 09FF must be corrected.

5.5 I/0 Requirements

The assembler uses standard I/0 routines in the KIM moni-
tor. Functionally equivalent user routines may be substituted
for use with another I/0 device or 6502 system. Table 5.1
gives a brief description of each of these routines, together
with the addresses of lines in the assembler which call each
subroutine.

47

KIM Routine

Table 5- 1|

Function

I/0 Routines

Assembler References

CRLF Carriage return, 075D {255D)
1E2F line feed 08A1 (26A1)
OUTCH Output ASCII from A. 0764 (2564)
1EAQ Preserve X. 08A8 (26A8)
GETCH Input ASCII to A, 0772 (2572)
1E5A Preserve X.
OUTSP Output one space. 078D (258D)
1EGE :
+5V
10KQ]
PA7 - _—_‘I l I-———'
PAS A B iosi/o INH '—_;_-
PA4
012 345¢67
PA3
PA2 | | | | |
PAl :
PAD ey INH 7 [—%
1/0 6 |
i 5 : 63-key
—_— unencoded
- 4 4™ keyboard
—————{ 0 3™
———————— 5 2 —W 8x8 matrix
1 00=short
' 3F=shift
0 b
Figure A.1l: Keyboard Interface

48

APPENDIX A: AN INEXPENSIVE I/0 SYSTEM

Many 6502 users, myself included, do not have a computer
terminal. I have developed a very inexpensive "terminal sub-
stitute.” I use a $30 unencoded keyboard for input, and dis-
play a 64-character ASCII subset on the KIM-1 display.

The keyboard is scanned using software, which allows keys
and combinations of keys to be defined arbitrarily. For example,
multiple key depressions could be used for playing chords in
music synthesis applications. The I/0 software given here simu-
lates a simple ASCII keyboard with "shift" but without "control"
or "repeat." The required software decreases the space avail-
able for program storage. Using the KIM-1 display for output
of ASCII characters can be frustrating, but it is a big improve-
ment over no ASCII output at all. The keyboard interface might
also be of interest to those planning to add one of Lancaster's
"cheap video" displays.

Keyboard interface. Figure A.1 is a schematic for the key-
board interface. The unencoded keyboard must be wired as a
matrix of eight rows and eight columns. One CMOS 4051 is used
as a multiplexer and the other as a demultiplexer. Output lines
PAO to PA5 select the row and column of interest. PA7 goes low
if the corresponding key is depressed.

The "shift" key must be connected to channel 7?7 of each 4051.
Channel 0 of one 4051 must be shorted to channel 0 of the other.
Other row and column assignments are arbitrary, since assign-
ment of ASCII codes is done in software.

The keyboard, 4051 chips, and wire-wrap sockets are avail-
able from Jameco Electronics, 1021 Howard Ave., San Carlos, CA
gHO?O for under $35. They also sell a wire-wrapping kit for

13.

Testing the interface. Load and run the relocatable test
routine below, With no key depressed, the data display should
read 00, Pressing the "shift" key should cause 3F to be dis-
played. If not, the keyboard interface is connected incorrectly.
When another key is pressed, the hexadecimal code for its row
and column will be displayed. Record this key number for each
key. Then make a table giving the ASCII equivalent for each key
number from 00 to 3F. Key numbers 00 and 3F correspond to "end
of scan" and "shift," respectively, so the value entered for
them will be ignored. This 64 byte table should be loaded at
address 0E80. There may be more than one key for a given ASCII
code, and not all ASCII codes will be used.

I/0 routines. Next, load the rest of the I/O software,
beginning with Table SEGTAB and ending with Subroutine CRLF.
SEGTAB gives the pattern of 1it segments to display a 64 char-
acter ASCII subset (ASCII 20 through 5F) on the KIM-1 display.

49

Some characters will look strange at first, but recognition

becomes easy with very little practice.

The subroutines

GETCH, OUTCH, OUTSP, and CRLF are functionally equivalent to

the KIM monitor routines of the same names.

Their addresses

must be substituted in the assembler I/0 subroutine calls as

explained in Section 5.5.
in other terminal-based programs.

These routines could also be used

Listing A. Test program for Qwerty keyboard. Displays
hexadecimal code of active key.

a9
8D
A9
85
A9
85
A9
8D
CE
AD
30
20
18
90
EA

7F
ol
00
FA
17
FB
40
00
00
00
F8
19

ED

17

17
17
17

1F

START

SCANKB

LDA#
STA
LDA#
STAZ
LDA#
STAZ
LDA#
STA
DEC
LDA
BMI
JSR
cLC
BCC
NOP

7F

PADD

00

PCINTL

17

PCINTH

50

40

PAD
PAD
PAD
SCANKB

SCAND

START

Define I/0.

Initialize pointer
for display routine.
Scan 63 keys.

Find active key.

Display key.

Repeat for new key.

0BCo

Table SEGTAB.
64-character ASCII subset.

00 OA 22 1B 36 24 5F 02 39 OF 21 18
3F 06 5B 4F 66 6D 7D 07 7F 6F 41 45

7B 77 7C 58 5B 79 71 3D 76 04 1E 70

73 67 50 2D 78 1C 6A 3E 14 6E 49 39

0OFQ0
readout for about 3 msec.

A9
8D
A9
8D
A2
CE
CE
B5
8D
AOQ
88
10
A9
8D
CA
10
60

7F
41
15
42
05
42
42
23
40
64

FD
00
40

EB

17

17

17
17

17

17

CHAR

WAIT

Subroutine DSPLAY.

LDA#
STA
LDA#
STA
LDX#
DEC
DEC
LDAZX
STA
LDY#
DEY
BPL
LDA#
STA
DEX
BPL
RTS

Display 6

7F

PCDD

15

PDD

05

51

PDD
PDD
DSPBUF
PCD
64

WAIT
00
PCD

CHAR

Seven~-segment code to display
Modify as desired.

0C 40 08 52
60 48 42 53
38 37 54 5C
44 OF 77 61

characters on KIM

Define I/0.
Initialize char.

Display 6 chars.
Select next char.

Get segment code.
Turn segments on.
Wait 500 msec.

Turn segments off.

Another char?

0r25 Subroutine
key in Y.

A2 3F

8E 01 17
8E 00 17
CE 00 17
AD 00 17
30 F8

29 3F

A8

DO 01

60

B9 80 OE
8E 00 17
2C 00 17
10 01

60

co 21

10 01
60

C9 40

30 01

60

49 10

60

NXTKEY

SHFTKY

NOT2LO

NOT2HI

GETKEY.

LDX#
STX
STX
DEC
LDA
BMI
ANDH
TAY
BNE
‘RTS
LDAY
STX
BIT
BPL
RTS
CMP#
BPL
RTS
CMP#
BMI
RTS
EOR#
RTS

Scan kybd; return ASCII in A,

3F
PADD
PAD
PAD
PAD
NXTKEY
3F

ANYKEY
KEYTAB
PAD
PAD
SHFTKY

21
NOT2LO

40
NOTZ2HI

10

52

Define I/0.

Scan 2 keys.

for active key.
Mask input bit.
Return if no key.

Get ASCIT.
Check shift key.

No shift; return.
shift legal?

Find shift char.

OF54 Subroutine ADDCH.
display from right.

A2
B4
94
EB
EO
30
E9
AA
BD
85
60

OF68 Subroutine GETCH.
Return ASCII in A.
required.

86
20
20
DO
EA
20
20
FO
co
DO
A2
B4
94
CA
10
A0
84
A6
60
48
20
A6
68
60

00
24
23

05
F7
20

co
28

3B
00
25
F8

00
25
F8
08
10
04
23
24

F9
00
23
3B

54
3B

OE

OF
OoF

OF
OF

OF

LEFT

X is preserved.

OLD

NONE

RIGHT

NOTBSP

LDX#
LDYZX
STYZX
INX
CPX3
BMI

SBC#

TAX

LDAX

STAZ

RTS

00
DSPBFI
DSPBUF

0s
LEFT
20

SEGTAB
DSPBF5

Shift ASCII character in A into

shift display
to left.

Find segment
code.

Add at right.

Get character from keyboard.

Add to display or backspace as

STXZ SAVX
JSR DSPLAY
JSR GETKEY
BNE OLD
NOP
JSR DSPLAY
JSR GETKEY
BEQ NONE
CMP# o8
BNE NOTBSP
LDX# 04
LDYZX DSPBUF
STYZX DSPBFI
DEX
BPL RIGHT
LDY# 00
STYZ DSPBUF
LDXZ SAVX
RTS
PHA
JSR ADDCH
LDXZ SAVX
PLA
RTS

53

Save X,
Wait for release
of old key.

wait for new
key depressed.
Backspace?

Yes, Shift
display right.

Add blank
at left.
Restore X.

Else, add char
to display.

OF97
play.

86 3B
20 54
A9 40
85 5¢C
20 00
C6 5C
10 FO
A6 3B
60

OFAA

A% 20
20 97
60

OFBO

A9 00
A2 05
95 23
CA
10 FB
60

Subroutine OUTCH. Add ASCII character in A to dis-
Display for about 0.2 sec. Preserve X.

STXZ SAVX Save X.
OoF JSR ADDCH Add char.
LDAH# 40 Wait 0.2 sec
STAZ TIME before returning.
OF SHOW JSR DSPLAY '
DECZ TIME
BPL SHOW
LDXZ SAVX Restore X.
RTS

Subroutine OUTSP. Output one space.

LDA# 20
OoF JSR OUTCH
RTS

Subroutine CRLF. Clear display.

LDA# 00
LDX# 05
CLEAR STAZX DSPBUF
PEX
BPL CLEAR
RTS

54

APPENDIX B: ANSWERS TO USER QUESTIONS
Q. Can the assembler be stored in read only memory?

A, Yes; it will just fit in a 2K ROM. Presumably it will have
to be relocated, following the instructions in Section 5.4. 1In
addition, the assembler must be entered at the relocated equiva-
lent of 09AA, This routine, which is unused in the RAM version
of the assembler, transfers the first nine entries in the symbol
table from ROM to RAM. These symbols correspond to commands and
are essential to the assembler. The correct source and destina-
tion addresses must be substituted in this initialization routine
Permission to reproduce the assembler in ROM may be obtained from
the author.

Q. If I have enough memory, can 1 expand the symbol table?

A. Yes. The standard version of the assembler allows 64 symbols
including nine for assembler commands. Space is available for
nine additional symbols if overflow error detection is defeated
by setting 05B4 (23B4) = EA. The assembler can also be modified
to give an overflow error message when the number of symbols
exceeds 128, by setting 05BC (23B0) = 10. Expanding the symbol
table to 128 entries requires moving the module and assembled
program storage areas. See Section 5.2. Actually, quite lengthy
programs can be assembled within the 1limit of 55 user symbols,
since local symbols are cleared each time a module is stored.

Q. My video terminal only has 32 characters per line, so your
print routine runs over by one character. Any advice?

A. Make the followi cha es at the addresses indicated:
0870(2670)=14, 0880(2680)= % 0890(2690% 08AD(26AD)=20,
08ED=1E, Input lines may Stlll exceed 32 characters,

Q. Can the assembler be used with the SYM microcomputer?

A. Easily. The I/0 routine addresses must be changed as ex-
lained in Section 5.5. The SYM monitor addresses are 834D
CRLF), BA47(0UTCH), BA1B(GETCH), and 8342(0UTSP).

Q. How about a command to give the starting address of the
module without having to check 0040, 00417

A. This is just one example of a number of commands that could
easily be 1mplemented by users who don't insist on fitting the
assembler in a 2K ROM. It is also possible to add features by
sacrificing existing commands. For example, some users may
rarely use ?REDEF, Others may use ?ASSGN and ?REDEF to name
and reserve space for tables. Either command could be replaced
by a user-written command. Reviewers disagreed on some of the
most desired features in a 2K assembler. The assembler is
sufficiently easy to modify that the final choice can be left
to the user.

55

AS41 --TEST
AzZaz

28FFa3

A548

RZ2B4

28FF83
20RA108
AZ1A -

BS3C SAVE
9DEBVB

cA

18F8

4Ceel1C

AZ21A ENTER
BIE®BB RESTR
953C

cA

18F8

4CDEBS

LDAZ
LDX#
JSR
LDAZ
LDX#
JSR
JSR
LDX#
LDAZX
STAX
DEX
BPL
IMP
LDX#
LDAX
STARZX
DEX
BPL.
JMP

MDLADH
az
DSPHEX
MDLADL
B4
DSPHEX
OUTLIN
1A
GLOBAL
COPY

SAVE
MONITR
1R
COPY
GLOBAL

RESTR
WARM

56

ae
B2
84
a7
as
8B
BE
11
13
15
i8
19
1B
1E
ZB
23
25
26
28

2K SYMBOLIC ASSEMBLER: REUISIONS

Here are the corrections for all bugs found so far, along with some
optional modifications to the 2KSA,

BRCKSPACE BUG

The “backspoce”™ key does not delete the lost character, but only moues a
pointer to allow typing over it. It is not possible to blank out a
character using the “space” key, because that is used to aduance it to the
naxt fietd. One solution is to use "tab" to advance to the naxt field,
freeing "space" for use as a blanking character. (Thanks to Ne!son Eduwards
for finding this bug.)

ADDRESS ASSIGNMENT PROBLEMS

The Z2KSA is designed to prevent accidental re-assignment of an address
to o symbol. Eaorly versions were a bit overzealous in this area, and
shouid be fixed by loading at B478: 34, @4, C3, FF. The re-assignment
check can also be defeated completaly, if desired, bu loading at B47A: ASY,
88. Just don’t forget and use the same symbo! twice.

EASIER RELOCATION

Relocation of modules in edit mode is possible if 7REDEF is changed to
-REDEF. Set @SDB=2D and B681=2D.

EASIER TESTING

The command --TEST (facing poge) con be used to print the start address
of the module and laave the assemblar for taesting. The extra huphen is
required because the I/0 buffer isn’t cleared. --TEST also automatically
saves the pointers required for source coda storage starting at address
@BE®. Source code can then be saved by simply dumping BROB-BCEA.

The listing also contains a re-entry routine (starting at ENTER) which
restores the pointers before entering edit mode. This would ordinarily ba
used after loeding source code from tape.

To substitute --TEST for 7TABLE, ioad it at 871F and load at B9EB: 2D,
2D, 54, 45, 53, 54. MONITR should be the warm start addraess for the
monitor of your particular computer.

57

SOURCE CODE TAPE RECORD FORM

To save:

Record pointer values below.
Dump OAQC through OC7F,.

To retrieve:

Initialize assembler.

Hit reset.

Load module from tape.
Restore pointers.

Enter assembler from 05D6.
Ignore any error code.

, GLOBAL PRGLEN SYMTBL SYMNUM
Module Name ' ID 003C 003D 0050,51 0056

Permission is hereby granted to photocopy this page.
58

2K SYMBOLIC ASSEMBLER WERSION 1.0 - SYM USERS’

Begin session

0200
0210
0220
0230
0240
0250
0240
0270
0280
0290
02A0
0280
02Co
0200
02E0
02F0

0300
0310
0320
0330
0340
0350
0340
0370
0380
03%0
03A0
03B0O
03C0
03D0
03ED
03F0

0400
0410
0420
0430
0440
0450
0440
0470
0480
04%0
04A0
0480
04C0
0400
04EOD
04F0

01

52
58
S0
45

02

with G SBS.

03

04

05

0é

Block

a7z

08
a4
49
ac
49
54
44
52
4c

checKsum:

43

0A
4Cc

59
52

0405

oc
43

oD
4c

GROUP

0E OF

56 44,85
50 48,48
54 53,42
59 54,09
53 54,20
44 43,FD
41 53,9C
52 4F, 48
53 52,15
45 42,7C
SA 20,3C
59 20,55
2E 19,54
04 11,5€C
0E 00,33
08 05,74

0E OF

EA 48,AC
0A 4A,A8
E? E4,3F
46 26,71
16 56,83
71 31,71
EC BE,S!1
2E &E,E3
9D 1E,78

19 F9,D8

30 00,26
FF 88,48
02 Cé,B%
29 OF,56
05 2D,9A
60 48,20

OE OF

40 38,92
02 26,3C
51 E5,12
Bt 2B,54
85 50,BE
91 50,82
A3 03,02
42 20,E6
FO 03,11
02 A2,82
02 30,15
C® FF,BA
60 Eé,A4
60 AZ,31
AP 34,00
20 FO,41

BRKCLCCLDCLICLVD

EXDEY INXINYNOPPH
APHPPLAPLPRTIRTS
SECSEDSEITAXTAYT
SXTXATXSTYACPXST
XLDXCPYLDYSTYADC
ANDCMPEORLDAORAS
BCSTAASLLSRROLRO
RDECINCBITJMPJSR
BCCBCSBEQBMIBNEB
PLBVCBVYS A # Z
ZXZYIXIY Xy
I - 0 .
+&.- ‘'80-‘/ r
"S52:1Pcun “
73 x

XX8J hHJH
h(2*Bxx#*{: J
*#jv'a idIl) id
&D$¢ eX/EEY e F&
fFf84 uSUUS u V
&uUvé a'AA! a qi
Qa1 q OpOP Pp1
Ly mMM-m N.n
Nn,L <3¥=11= 3}
SRV YOYY? v
T X %= 1) o0
x&&$510Q2p
uHP “8%0ed4 00 F
1J a*5 120 8i
U -h U -
*»*I1 0 i i0 *H

JJJJ r hh> r 8
-/Ne- +) &
+&, yB/APe+ +/Qe
o 1+ DHIi+
*) *® VPi P
f@ > P 1) P
y&\UJh U R"P #

p YR C au "B
#p 21 "I #p
2841 R 1
J%.18 ¥»3*10 0
I3 N 7=]
P 23471 - f
1% " a 8y-*"

RlIa "P # p 24
4 p X5 841 p

0500
0510
0520
0530
0540
0550
0540
03570
0580
05%0
0SA0
0580
05Co
05D0
0SEQ
05FO0

0400
0610
0420
0630
0640
0650
04460
0470
0680
0690
046A0
04B0
04€0
04D0
064ED
0&F0

0700
0710
0720
0730
07490
0750
0780
0770
0780
0790
07A0
0780
07C0o
07D0
07EC
07F0

04
A
84
2D
40
Eé
00
A%

F8
21
3D
é0
3F
10

04

a9
=10
&9
30
ce
AS
20
&0
a9
FQ
21
10
A2
Az
02

Do

OF
AP, F9
03,8E
3F,A4
20,D7
18,75
00,23
48,1D
00,1{E
04,4F
2F,4C
56,37
3F,1A
FB,46
AZ,7E
AS,BA
2D, CO0

OF

EA,7A
3E,25
07,93
44,84
03,48
07,A5
A%,37
40 ,AD
10,E8
20,E3
EG,DA
3E,B1
34,87
864,64
20,90
85,48

oF

Eé,17
AS, D!
A%,B5

?
0c,FA
83,4A
06,D7
c9,03
83,D3
£8,B2
85, 4A
2B,B3
24,93
A%,0C
DO, 8B
10,F7

YENI-CGUP H p)
C 8471i d<
Y7 ¥)-"jd<0 4 E?

P84 "1 p "

a 9f/O-"VE p

i Y R"P # p X

1?2 0)AY) H)uH
4 1> v 3 %/ %7
> oxAal p oy i
AP + A + Vies

> Y=e/ = B3V
P YC)=—X" =f 7
J x)? “1J <
SIS Ir A A o
Y-) /YK
2I-P A 1P 3 I-

P w"p I &)
Y i op oD O >
= ¥UPH)Y
1P)Y2) i p D
A a +II a

TS IUNN B
% Lj . IDP >:%)
-t hn a All a la
Y 1= W
CHI> % W %
4% &cta W
i 8i 8e> W' Hg>
WHYA%i W &<h 4
1P 1+ X
+ ! &+dV0ct K -
Ep Y49 WA

X -gYWe- W §
X8%>e- >E=0e)- %
I P2 i p)
DY %@ +HZA +*
a ed d fA) "
JC1% EjiM
"5 G h' Ou")
- I P 1P I
PJf~) 1 P j B
hF- x> -1 0 h
F- MJi&< U+
P, O YA + %2 +
e= 2 fAY?PY =
20QYai VALY
J (&Y 4 YOEOP
YPE*P 1+

0800
0810
0820
0830
0840
0850
0840
0870
0880
08%0
08A0
08B0
08Co
0800
0BED
08FD

0960
0910
0920
0930
0940
09350
0940
09?0
0980
0990
09A0
09B0
a%co
0200
09E0D
G9F0

oF
FF,DS
07,7C
02,DA
85,06
0F,07
01,46
A2,8C
99,09
02,E4
03,78
Fé,21
20,34
20,17
39,89
FF,C9
Eé,&5

oF

85,93
1A,1C
07,7F
40,67
65,FC
91,D1
02,1A
F0,C9
38,38
91,99
$D,DB
06,65
06,22
06,Dé
07,0A
09,05

x" Jd< v 1w
1> 72" 1 "I

0 " J t¥h: =
=) 128&: 2N
s e W= =
= <71 AL 74
1" A71% 15"
A S 1+
X471l M f/
1w i "

M S5 G h #0v

VYO WHA XM

a Y' a 2)» @

Y ZOEYP FPEZP F¥%

EY0 EZ 480 "
Vi AWes W f

X ¥>es YE=0C™)
81 >-*&V 4 E?P
%YE>0 $)DZ H~

+ e/ +jJd< 2»
/2E=P ™ 2 e
s OIA? w/=Be>(1>
> y*) 81 EZP
F9APp YANAY >&Zp
&8e2 / A7 [#=8
ey =V= e/ = 12
>HD-0wj)~->"G=8
8 J wbL8 PASSGN.
?BEGIN ~LOCALe
?PREDEFr -ASSEMK
?TABLE -STORE&
-PRINT -INSRTe

Corrections found by Jeff Tranter

Symbols defined but never used, in table 4.2 on page 43:
USER

RFH

SAVX

MNETBL

MODTBL

SYMRFH

LAST2

Symbols used in the listing but not documented the above table:
IOBUF1

OPCODE1

OPCODE2

OPCODES3

OPCODE4

OFFSET

SYMPTR

OPRDP

Source code errors
Page 16: The two instances of "JSR BIN2HEX" should read "JSR BIN2HX".
Page 24: The third instruction "LDAZ PRMTAB" should be "LDAZX PRMTAB"

(orinthe more conventional CC65 assembler, "LDA PRMTAB,X").

Page 28: The first instruction "LDA #00" should be "LDY #00".
Page 34: The syntax of some instructions is unusual, e.g. "LDAX
MODTAB 01" means "LDAX MODTAB+01" or in the more conventional CC65

assembler, "LDA MODTAB+1,X".

The binary dump at the end of the document was very useful for
confirming that the assembled version exactly matched the original.

The only discrepancy in this listing is that the addresses for the I1/0O
routines (GETCH, etc.) do not match the KIM-1 ROM addresses. This is
because the dump was for a SYM system as the listing says "SYM USER'S
GROUP" (see page 55 of the manual for the changes for a SYM computer).
Note that the last column in the memory dump is a checksum, an 8-bit

running total of the bytes in the file up to that point.

